

# Overview of Feasibility Studies on CE-5: Free Maneuvering

Dr. Karl Bilimoria

**NASA Ames Research Center** 

<kbilimoria@mail.arc.nasa.gov>

DAG-TM Workshop
15 November 2002

#### **Outline of Presentation**



- Background
- Summary of selected studies
  - Properties of air traffic conflicts for free and structured routing
  - Performance evaluation of airborne separation assurance for Free Flight
  - System performance characteristics of centralized and decentralized air traffic separation strategies
  - Stability of intersecting aircraft streams with self-separation
  - Aircraft conflict resolution with an arrival time constraint
  - Agent-based approach to constrained conflict resolution
- Lessons learned
- Open research issues

## **Background**



- Initial feasibility evaluation of Free Maneuvering operations
  - Focus on high-level performance characteristics and issues
  - Perfect information
  - No human in the loop
- Key issue: Effects of decentralized separation assurance
  - Can separation be maintained under decentralized rules?
  - What are the effects on system efficiency?
  - What are the implications for system stability (domino effect)?
  - What is the impact on conformance to local-TFM constraints?
- Numerous studies conducted (FY00 FY02)
  - In-house work at Ames
  - RTO-36 and RTO-67 (Seagull)
  - Cooperative Agreements with MIT

## Relevant Publications (1 of 2)



- 1. Bilimoria, K.D. and Lee, H.Q., "Aircraft Conflict Resolution with an Arrival Time Constraint," Paper No. 2002-4444, *AIAA Guidance, Navigation, and Control Conference,* August 2002.
- 2. Mueller, K.T., Schleicher, D., and Bilimoria, K.D., "Conflict Detection and Resolution with Traffic Flow Constraints," Paper No. 2002-4445, *AIAA Guidance, Navigation, and Control Conference*, August 2002.
- 3. Dugail, D., Feron, E., and Bilimoria, K.D., "Conflict-Free Conformance to En Route Flow-Rate Constraints," Paper No. 2002-5013, *AIAA Guidance, Navigation, and Control Conference*, August 2002.
- 4. Harper, K.A., Guarino, S.L., Hanson, M.L., Bilimoria, K.D., and Mulfinger, D.G., "An Agent-Based Approach to Aircraft Conflict Resolution with Spatial Constraints," Paper No. 2002-4552, *AIAA Guidance, Navigation, and Control Conference*, August 2002.
- 5. Dugail, D., Feron, E., and Bilimoria, K., "Stability of Intersecting Aircraft Flows using Heading Change Maneuvers for Conflict Avoidance," Paper INV-5005, *American Control Conference*, May 2002.
- 6. Krozel, J., Peters, M., Bilimoria, K.D., Lee, C., and Mitchell, J.S.B., "System Performance Characteristics of Centralized and Decentralized Air Traffic Separation Strategies," *4th USA/Europe Air Traffic Management Research and Development Seminar*, December 2001; also, *Air Traffic Control Quarterly*, Vol. 9, No. 4, December 2001, pp. 311–332.

## Relevant Publications (2 of 2)



- 7. Bilimoria, K.D. and Lee, H.Q., "Properties of Air Traffic Conflicts for Free and Structured Routing," Paper No. 2001-4051, *AIAA Guidance, Navigation, and Control Conference*, August 2001.
- 8. Mao, Z.-H., Feron, E., and Bilimoria, K., "Stability and Performance of Intersecting Aircraft Flows under Decentralized Conflict Avoidance Rules," Paper No. 2000-4271, *AIAA Guidance, Navigation, and Control Conference*, August 2000; also, *IEEE Transactions on Intelligent Transportation Systems*, Vol. 2, No. 2, June 2001, pp. 101–109.
- 9. Bilimoria, K.D., "A Geometric Optimization Approach to Aircraft Conflict Resolution," Paper No. 2000-4265, AIAA Guidance, Navigation, and Control Conference, August 2000.
- 10. Bilimoria, K.D., Sheth, K.S., Lee, H.Q., and Grabbe, S.R., "Performance Evaluation of Airborne Separation Assurance for Free Flight," Paper No. 2000-4269, *AIAA Guidance, Navigation, and Control Conference*, August 2000; also, *Air Traffic Control Quarterly*, to appear.
- 11. Bilimoria, K.D., Lee, H.Q., Mao, Z.-H., and Feron, E., "Comparison of Centralized and Decentralized Conflict Resolution Strategies for Multiple-Aircraft Problems," Paper No. 2000-4268, AIAA Guidance, Navigation, and Control Conference, August 2000.

#### Papers available upon request

## Study #1



# **Properties of Air Traffic Conflicts** for Free and Structured Routing

Xarl Bilimoria and Hilda Lee
 Paper No. 2001-4051
 AIAA Guidance, Navigation, and Control Conference
 Montréal, CANADA
 August 2001

#### **Problem Definition**



#### Research Questions:

- How often would conflict occur in the absence of corrective action?
- What are the key properties of conflicts?
- What is the level of interaction between individual conflicts?
- Does free routing significantly change the number/nature of conflicts?

#### Approach

- Conduct simulation based on real traffic data from current operations
  - » Aircraft-to-aircraft conflicts only
  - » Wind effects not modeled
- Study conflicts only in Class A airspace (at or above FL180)
  - » Trajectories in lower airspace can vary significantly from flight plans
  - » Significant percentage of flights in lower airspace are VFR flights

#### **Conflict Data Collection**



- Enhanced Traffic Management System (ETMS) data for a 24-hr period in March 2001
  - 57,402 aircraft total
  - 37,926 aircraft in Class A airspace
- Birth points and times captured from ETMS data
- Aircraft fly to destination in 3-D simulation, with Conflict Resolution <u>OFF</u>
  - Free (great circle) routing
  - Structured (flight plan) routing

#### Aircraft Count vs. Time



## FACET: Future ATM Concepts Evaluation Tool

- Simulation tool for exploring advanced ATM concepts
  - Developed at NASA-Ames
- Airspace Modeling (over contiguous U.S.)
  - Center/sector boundaries
  - Jet/Victor airways
  - Navigation aids
  - Airports



- Trajectory Modeling
  - Fly flight-plan routes or direct (great circle) routes over round earth
  - Climb/descent performance models
  - Dynamic models for turns and acceleration/deceleration

Bilimoria, K.D., Sridhar, B., Chatterji, G.B., Sheth, K.S., and Grabbe, S.R., "FACET: Future ATM Concepts Evaluation Tool," *Air Traffic Control Quarterly*, Vol. 9, No. 1, 2001, pp. 1–20.

#### **Results: Number of Conflicts**



#### **Counts of Conflicts and Aircraft**



#### **Number of Conflicts per Aircraft**



Number of Conflicts Encountered by an Aircraft

## Results: Conflict Counts vs. Time



#### **Structured Routing**



#### **Free Routing**



## Results: Conflict Properties



#### **Encounter Angle Distributions**



#### **Altitude-Rate Distributions**



#### Results: Conflict Interactions







Type of Conflict Interaction

## **Summary of Study #1**



- Investigated conflict properties for free and structured routing in a simulation based on 24 hours of real traffic data (ETMS)
  - Results for conflicts in Class A airspace
- Less than 30% of aircraft ever experienced a conflict
  - Of these, about 40% experienced more than one conflict
- About 75% of conflicts involve only level-flying aircraft
- Most (~85%) conflicts had no significant interaction
  - Useful information for design of conflict resolution tools
- Free routing has  $\sim 10\%$  fewer conflicts than structured routing
  - Supports feasibility of Free Flight concept

## Study #2



# Performance Evaluation of Airborne Separation Assurance for Free Flight

 Karl Bilimoria, Kapil Sheth, Hilda Lee, and Shon Grabbe Paper No. 2000-4269
 AIAA Guidance, Navigation, and Control Conference Denver, CO August 2000

#### **Problem Definition**



#### • Research Objectives:

- Study feasibility of airborne separation assurance for free flight
- Develop techniques to assess performance of CD&R algorithms

#### Approach

- Use two qualitatively different CD&R methods
  - » Geometric Optimization approach
  - » Modified Potential-Field approach
- Create a realistic Free Flight traffic scenario
  - » Utilize initial conditions obtained from real traffic data
- Evaluate system performance using metrics
  - » Safety
  - » Efficiency
  - » Stability

## Free Flight Traffic Scenario



- Birth points extracted from Enhanced Traffic Management System (ETMS) data
  - 3 hours of data for Denver Center,
     from 9 am 12 noon, on 18 March 1999
  - 955 aircraft in Class A airspace (≥ FL180)

#### Free Flight simulation

- Fly direct route from birth point to destination (great circle navigation)
- Deviate from nominal trajectory as necessary for conflict resolution
- Conflict resolutions shared equally
- Horizontal flight only
  - » Each aircraft flies at its cruise (maximum) altitude found in ETMS tracks



#### **Metrics for Performance Evaluation**



#### Safety

Number of observed conflicts (loss of separation) with CD&R engaged

#### Efficiency

- Incremental cost of conflict resolution, measured by:
  - » Change in path length (relative to nominal trajectory with no CD&R)
  - » Change in flight time (relative to nominal trajectory with no CD&R)

#### Stability

- Conflict resolution often creates new conflicts "domino effect"
  - » Number of deviated aircraft that were not nominally in conflict
  - » Number of aircraft, nominally in conflict, that were not deviated



## Efficiency Results: Flight-Time Changes



|                        | Geometric Optimization CD&R Method | Modified<br>Potential-Field<br>CD&R Method |
|------------------------|------------------------------------|--------------------------------------------|
| Count for $ \Delta T $ | 155 aircraft                       | 206 aircraft                               |
| Sgn. Mean              | 6 sec                              | 2 sec                                      |
| Abs. Mean              | 12 sec                             | 11 sec                                     |
| Abs. Sum               | 1810 sec                           | 2226 sec                                   |

## Stability Results





#### Domino Effect Parameter

$$DEP = \left\lfloor \left( \frac{D}{A_{nom}} \right) - \left( \frac{S}{A_{nom}} \right) \right\rfloor = \left( \frac{D - S}{A_{nom}} \right)$$

|           | Geometric Optimization CD&R Method | Modified Potential-Field CD&R Method |
|-----------|------------------------------------|--------------------------------------|
| $A_{nom}$ | 209                                | 209                                  |
| $A_{CDR}$ | 248                                | 352                                  |
| D         | 47                                 | 145                                  |
| S         | 8                                  | 2                                    |
| DEP       | 0.19                               | 0.68                                 |

## **Summary of Study #2**



- Investigated feasibility of self-separation using a Free Flight traffic scenario constructed from real air traffic data
- All conflicts were resolved
- Deviations of individual trajectories were very small
  - Mean flight-time changes ∼10 sec
  - Mean path-length changes ∼1 nm
- Impact on system stability is dependent on CR method
  - Percentage of additional aircraft drawn into conflicts  $\sim 20\%$  to 70%
- These preliminary results support the feasibility of airborne separation assurance for Free Flight

## Study #3



# System Performance Characteristics of Centralized and Decentralized Air Traffic Separation Strategies

Jimmy Krozel, Mark Peters, Karl Bilimoria, Changkil Lee, and Joseph Mitchell »4th USA/Europe Air Traffic Management R&D Seminar

»Santa Fe, NM »December 2001

**>>** 

#### **Problem Definition**



#### Research Questions:

- Does decentralized CD&R create a domino effect? How strong is it?
- What does the domino effect do to system-wide trajectory deviations?
- How does system performance vary with traffic density?

#### Approach

- Simple implementations of two types of separation strategies
  - » Centralized: Emphasizes system stability tries to suppress domino effect
  - » Decentralized: Emphasizes efficient resolution of individual conflicts
    - Myopic: Focuses exclusively on aircraft-level efficiency
    - Look-ahead: Gives up some efficiency to gain some stability
- Run Monte Carlo simulations of free flight, using randomized traffic scenarios
  - » Simulate varying traffic densities (up to  $\sim 5x$  current peak en route density)
- Measure domino effect, and determine its impact on trajectory deviations

## **Numerical Experiments**





#### **Monte Carlo Runs**

- Run time of 50 minutes for each scenario
- 16 traffic densities
- 18 randomized traffic scenarios at each density (total 288 scenarios)
- Each scenario was run with:
  - Conflict Resolution (CR) off
  - Centralized CR
  - Myopic Decentr. CR
  - Look-ahead Decentr. CR

## NASA =

#### Domino Effect Parameter vs. Traffic Density

S<sub>1</sub>: Conflict Alerts with Resolution OFF Resolution ON



#### **Domino Effect Parameter**

$$DEP = \left(\frac{|R_3| - |R_1|}{|S_1|}\right) = \left(\frac{|S_2|}{|S_1|} - 1\right)$$



Ames Research Center



## System Efficiency vs. Traffic Density



$$E_{sys} = \frac{1}{N} \sum_{i=1}^{N} \left( 1 - \frac{\Delta l_i}{l_i} \right)$$

- Even a 1% change in system efficiency is significant from an operational perspective
- Crossover between Centralized and Decentralized strategies at about 13 a/c per 10<sup>4</sup> sq. nmi
- Crossover between the Myopic and Look-ahead Decentralized strategies at about 16 a/c per 10<sup>4</sup> sq. nmi

## **Summary of Study #3**



- Investigated impact of domino effect on system performance
- System efficiency degrades with increasing traffic density for centralized as well as decentralized separation strategies
- Decentralized separation strategies can create a strong domino effect, especially at very high traffic densities. However,
  - Domino effect does not significantly degrade system efficiency up to a threshold traffic density
  - Threshold density can be increased by adding a look-ahead feature
- Mitigation of domino effect should be an important factor in the design of algorithms for airborne separation systems



## Study #4: Stability of Intersecting Streams

- <u>Objective</u>: Determine stability characteristics of intersecting streams of aircraft operating under decentralized CD&R rules (self-separation)
  - Developed an analytical proof for stability, and checked it via simulations
- Stability defined as existence of bounds on trajectory deviations
- Determined analytical expression for bounds on trajectory deviations to resolve "streaming" conflicts
- Bound values cross-checked by numerical simulations
  - Excellent agreement



Mao, Z.-H., Feron, E., and Bilimoria, K.D., "Stability and Performance of Intersecting Aircraft Flows under Decentralized Conflict Avoidance Rules," *IEEE Transactions on Intelligent Transportation Systems*, Vol. 2, No. 2, June 2001; and, Dugail, D., Feron, E., and Bilimoria, K.D, "Stability of Intersecting Aircraft Flows using Heading Change Maneuvers for Conflict Avoidance," Paper INV-5005, *American Control Conference*, May 2002

## Study #5



# Aircraft Conflict Resolution with an Arrival Time Constraint

Karl Bilimoria and Hilda Lee
 Paper No. 2002-4444
 AIAA Guidance, Navigation, and Control Conference
 Monterey, CA
 August 2002

#### **Problem Definition**



#### • Research Objectives:

- Investigate structure of conflict resolution families with RTA constraints
- Determine effects of aircraft performance limits on existence of solutions

#### Approach

- Extend the Geometric Optimization method to handle RTA constraints
  - » Avoidance solutions: Heading change, Speed change, Optimal (hdg + spd) change
  - » Recovery solution: Change heading to capture WPT; adjust speed to meet RTA
- Delay Compensated avoidance solution
  - » Avoids conflict using a special combination of heading and speed
  - » Delay caused by path stretching is exactly compensated by speed increase
  - » Recovery speed equals nominal speed
- Use simple model of aircraft performance (speed and acceleration) limits
- Conduct parametric study to reveal structure of solutions for conflict resolution with RTA constraint

## Parametric Study



- Fundamental parameter for RTA study is  $\tau = (t_{FLS}/t_{RTA})$  where  $t_{RTA} = (1_{WPT}/V_{NOM})$
- Determined family of CR solutions for 7 values of 1 <sub>WPT</sub>:
   55, 60, 75, 100, 150, 200, 250 nm
- Computed solution families for 3 encounter angles: 30, 90, 150 degrees
- Avoidance: Heading, Speed, Optimal change; Delay Comp.





## Parametric Study: 90 deg Encounter







## Parametric Study: 30 deg Encounter





## **Summary of Study #5**



- Generated families of conflict avoidance and recovery solutions, characterized by severity of arrival time (RTA) constraint
- The domain of feasible resolutions is constrained by aircraft performance (speed/acceleration) limits
  - Delay Compensated solution has larger domain of feasibility
  - Other operational solutions could be determined by numerical search
- Required speed often exceeds performance limits if the time to conflict is more than half of the required time to next waypoint
- Prioritization rules for conflict resolution should favor the aircraft that is closer to its RTA



## Study #6: Agent-Based Conflict Resolution

- Objective: Develop agent-based approach to conflict resolution
- In DAG-TM operations, negotiated resolution of conflicts may be necessary in situations involving constraints: Wx cells, SUA, RTA, etc.
- Pilot and controller agents utilize Principled Negotiation approach
- Starting with a 50-50 split, agents negotiate an equitable solution that satisfies all constraints
- FACET study, using realistic traffic and SUA data for LA Center, shows about 10% of conflicts need negotiation



Harper, K.A., Guarino, S.L., Hanson, M.L., Bilimoria, K.D., and Mulfinger, D.G., "An Agent-Based Approach to Aircraft Conflict Resolution with Spatial Constraints," Paper No. 2002-4552, *AIAA Guidance, Navigation and Control Conference*, August 2002.

## **Constraint Hierarchy**



#### 1. Aircraft maneuver constraints

Hard constraints that are impossible to violate

#### 2. Separation constraints

 Strong constraints that are possible to violate (if extreme conditions warrant doing so), but must generally be respected for safety reasons

#### 3. Flow management constraints

- Constraints that generally do not have a significant impact on safety,
   if violated on an individual flight basis
- Violation of these constraints may have a negative effect on the flow of traffic and result in reduced flight efficiency

#### 4. User preference constraints

- Soft constraints that generally do not reduce safety when exceeded
- There is a cost to the aircraft operator, either directly in terms of dollars or indirectly in terms of passenger dissatisfaction, if these constraints are significantly exceeded

## Lessons Learned (1 of 2)



- Conflicts can be resolved without central coordination
  - Resolved conflicts for traffic scenarios created from real (ETMS) data
  - Resolved multiple-aircraft "converging" conflicts; decentralized solutions showed only ~10% degradation relative to benchmark centralized solutions
  - Derived analytic proof of stable resolutions for "streaming" conflicts
- Trajectory deviations for conflict resolution (distance or time) are very small compared to nominal trajectory length or time
  - Differences in efficiency between various algorithms likely to be quite small
  - Differences in stability could be significant
- Domino effect is not a "show stopper"
  - Trajectory deviations small at current density, even for "myopic" resolutions
  - Significant degradation of efficiency at high (e.g., 3x) densities, but...
  - Degradation can be significantly attenuated by imposing the following rule:
     Resolution of a conflict should not cause any new short-term conflicts

## Lessons Learned (2 of 2)



- Conflict Resolution with TFM constraints
  - Required speed often exceeds aircraft performance limits if the time to conflict is more than half of the required time to next waypoint
  - Delay Compensated avoidance maneuver can alleviate this problem
  - Conflict resolution rules should assign priority to aircraft closer to RTA
  - Negotiated resolution can solve highly constrained conflicts
- In en route airspace, at current traffic density:
  - Free routing reduces the number and complexity of conflicts
  - Less than 30% of aircraft ever experienced a conflict
  - Horizontal plane conflicts represent about 75% of total conflicts
- Overall, the results from all studies support the feasibility of Free Maneuvering for user-preferred separation assurance and local-TFM conformance

#### Open Research Issues



- Cooperative or non-cooperative conflict resolution?
  - Non-cooperative resolution requires comprehensive and unambiguous flight rules to establish priority
    - » Can these rules be made to work for multiple-aircraft conflicts?
    - » Can these rules be extended to resolution with constraints (SUA, RTA, etc.)?
    - » Is non-cooperative resolution sufficient in highly constrained situations?
  - Cooperative resolution may require more complex procedures and/or algorithms
    - » Can it reduce domino effect at very high traffic densities?
    - » What type of implicit coordination is required?
    - » Is explicit coordination required for highly constrained conflicts?

- Must all "autonomous" aircraft use the same CD&R algorithm?
  - Significant issue for cooperative resolution
  - Less relevant for non-cooperative resolution



## **Backup Slides**



## Geometric Optimization CR Algorithm (1 of 2)

- Developed an algorithm for efficient resolution of aircraft conflicts
  - Seeks to minimize deviations from nominal trajectory
  - Geometric characteristics of aircraft trajectories are utilized to determine closed-form analytical expressions for conflict avoidance commands
    - » Best heading-speed combination
    - » Heading
    - » Speed
    - » Altitude-rate
- Implemented algorithm in ATM simulation environment (FACET)
- Conducted extensive testing with very challenging scenarios



Bilimoria, K.D., "A Geometric Optimization Approach to Aircraft Conflict Resolution," Paper 2000-4265, AIAA Guidance, Navigation, and Control Conference, August 2000.



## Geometric Optimization CR Algorithm (2 of 2)

- Formal mathematical verification of the Geometric Optimization CR algorithm conducted at LaRC as part of a safety assessment of DAG-TM
  - e.g., no faults in logic flow, no divisions by zero, always returns solution
- Extended G.O. algorithm for conflict resolution with RTA conformance
  - Determine recovery speed and course to meet RTA at next waypoint
  - Delay Compensated avoidance solution (combination of speed and heading)
- Geometric Optimization CR software may be used for upcoming DAG-TM piloted simulations to study Human Factors aspects of self-separation
- Self-separation studies conducted using Geometric Optimization CR
  - Performance of decentralized CD&R for complex multiple-aircraft problems
    - » Works for 8-aircraft problems (28 simultaneous conflicts)
    - » Performance degradation (relative to centralized CD&R) is around 10%
  - Feasibility of self-separation in simulated Free Flight with realistic traffic
    - » Conducted using FACET